Основные принципы tcp/ip-адресов и подсетей

Версия 4

Основная статья: IPv4

В современной сети Интернет используется IP четвёртой версии, также известный как IPv4. В протоколе IP этой версии каждому узлу сети ставится в соответствие IP-адрес длиной 4 октета (4 байта). При этом компьютеры в подсетях объединяются общими начальными битами адреса. Количество этих бит, общее для данной подсети, называется маской подсети (ранее использовалось деление пространства адресов по классам — A, B, C; класс сети определялся диапазоном значений старшего октета и определял число адресуемых узлов в данной сети, сейчас используется бесклассовая адресация).

Задание параметров вручную

С другой стороны, маска сети как один из основных параметров рядовому пользователю, собственно, и не нужна. Как мы уже и говорили, подключения такого типа относятся к классу «C», и система воспринимает их как стандартные и автоматически следует настройкам и основным инструкциям.

Естественно, все настройки, касающиеся того, как изменить тот же IP-адрес или настройки прокси-сервера (если таковой, естественно, используется) и маска сети могут подвергнуться изменениям, но это более касается только серверных систем, которые отвечают за работу множества терминалов, объединенных в одну сеть или подключенных удаленно.

Тут уж все зависит от знаний и умений самого системного администратора. Неправильное задание последовательности третьего и четвертого числа может привести только к тому, что и вся локальная сеть работать не будет. Как уже понятно, это чревато последствиями для всей локальной сети, а также терминалов, в ней находящихся.

Две базовые части IP-адреса

IP-адрес устройства состоит из двух отдельных частей:

  • Идентификатор сети: является частью IP-адреса; начинаются слева и идентифицирует конкретную сеть, на которой расположено устройство. В обычной домашней сети, где устройство имеет IP-адрес 192.168.1.34, часть 192.168.1 будет идентификатором сети. Если заполнить недостающую конечную часть нулём, мы можем сказать, что сетевой идентификатор устройства – 192.168.1.0.
  • Идентификатор хоста: это часть IP-адреса, не занятого сетевым идентификатором. Он идентифицирует конкретное устройство (в мире TCP/IP устройства называют «хостами») в этой сети. Продолжая наш пример IP-адреса 192.168.1.34, идентификатором хоста будет 34 – уникальный идентификатор устройства в сети 192.168.1

Чтобы представить всё это немного лучше, давайте обратимся к аналогии. Это очень похоже на то, как уличные адреса работают в городе. Возьмите адрес, такой как Набережная 29/49. Название улицы похоже на идентификатор сети, а номер дома похож на идентификатор хоста. Внутри города никакие две улицы не будут называться одинаково, так же как ни один идентификатор сети в одной сети не будет назван одинаковым. На определенной улице каждый номер дома уникален, так же как все ID хоста в определенном сетевом идентификаторе.

Пакет

IP-пакет — форматированный блок информации, передаваемый по компьютерной сети, структура которого определена протоколом IP. В отличие от них, соединения компьютерных сетей, которые не поддерживают IP-пакеты, такие как традиционные соединения типа «точка-точка» в телекоммуникациях, просто передают данные в виде последовательности байтов, символов или битов. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.

Версия 4 (IPv4)

Основная статья: IPv4

Октет 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия IHL Differentiated Services Code Point ECN Длина пакета
4 Идентификатор Флаги Смещение фрагмента
8 Время жизни (TTL) Протокол Контрольная сумма заголовка
12 IP-адрес отправителя
16 IP-адрес получателя
20 Параметры (от 0 до 10-и 32-х битных слов)
  Данные
  • Версия — для IPv4 значение поля должно быть равно 4.
  • IHL — (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных (англ. payload — полезный груз) в пакете. Минимальное корректное значение для этого поля равно 5.
  • Длина пакета — (Total Length) длина пакета в октетах, включая заголовок и данные. Минимальное корректное значение для этого поля равно 20, максимальное — 65 535.
  • Идентификатор — (Identification) значение, назначаемое отправителем пакета и предназначенное для определения корректной последовательности фрагментов при сборке пакета. Для фрагментированного пакета все фрагменты имеют одинаковый идентификатор.
  • 3 бита флагов. Первый бит должен быть всегда равен нулю, второй бит DF (don’t fragment) определяет возможность фрагментации пакета и третий бит MF (more fragments) показывает, не является ли этот пакет последним в цепочке пакетов.
  • Смещение фрагмента — (Fragment Offset) значение, определяющее позицию фрагмента в потоке данных. Смещение задается количеством восьмибайтовых блоков, поэтому это значение требует умножения на 8 для перевода в байты.
  • Время жизни (TTL) — число маршрутизаторов, которые может пройти этот пакет. При прохождении маршрутизатора это число уменьшается на единицу. Если значение этого поля равно нулю, то пакет должен быть отброшен, и отправителю пакета может быть послано сообщение Time Exceeded (ICMP тип 11 код 0).

Версия 6 (IPv6)

Основная статья: IPv6

Позиция в октетах 1 2 3
Позиция в битах 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия Класс трафика
4 32 Длина полезной нагрузки След. заголовок Число переходов
8 64 IP-адрес отправителя
12 96
16 128
20 160
24 192 IP-адрес получателя
28 224
32 256
36 288
  • Версия — для IPv6 значение поля должно быть равно 6.
  • Класс трафика — определяет приоритет трафика (QoS, класс обслуживания).
  • Метка потока — уникальное число, одинаковое для однородного потока пакетов.
  • Длина полезной нагрузки — длина данных в октетах (заголовок IP-пакета не учитывается).
  • Следующий заголовок — задаёт тип расширенного заголовка (англ. IPv6 extension), который идёт следующим. В последнем расширенном заголовке поле Next header задаёт тип транспортного протокола (TCP, UDP и т. д.) и определяет следующий инкапсулированный уровень.
  • Число переходов — максимальное число маршрутизаторов, которые может пройти пакет. При прохождении маршрутизатора это значение уменьшается на единицу и по достижении нуля пакет отбрасывается.

Основы IP адресации

В реальной жизни, когда вы отправляете кому-либо письмо, на конверте вы должны указать адрес получателя, а также свой адрес (адрес отправителя). Без этого писмо не найдет своего получателя и вы не сможете получить ответ на это письмо. То-же самое происходит в компьютеных сетях — для того, чтоб один компьютер отправил сообщение другому компьютеру, он должен знать адрес компьютера-получателя, а также предоставить информацию о своем адресе для получения ответа. Этот адрес, присвоенный компьютеру, называется IP адрес.

Для идентификации компьютера, или другого сетевого устройства, достаточно знать два параметра: IP адрес, и маску сети.

Например:

На самом деле, IP адрес 192.168.2.102 и Маска 255.255.255.0 — это всего-лишь абстракция, представление числа в десятичном, понятном человеку формате.

Компьютер видит эти числа в двоичном формате. Для хранения IPv4 адресса используется 32 битные переменные, один байт равен 8 бит -> 4 * 8 = 32 — отсюда и четверка в IPv4, то-есть это 32 битные числа, состоящие из комбинации 32 нулей и единиц.

IPv4 адрес и маска подсети для компьютера выглядит так:

Address:    11000000101010000000001001100110
Netmask:    11111111111111111111111100000000

Как вы видите, для человека эти нули и единицы мало что говорят, потому для простоты восприятия, эти последовательности нулей и единиц разделены на блоки по 8 бит, октеты:

Address:    11000000.10101000.00000010.01100110
Netmask:    11111111.11111111.11111111.00000000

Уже легче, но проблема не ушла, даже разбив 32 битное число на 4 октета ситуация с восприятием не улучшилась, человек все-таки легче всего воспринимает числа, записанные в десятичном формате.

Address:    11000000.10101000.00000010.01100110   (192.168.2.102)
Netmask:    11111111.11111111.11111111.00000000   (255.255.255.0) /24

Ну вот. это уже другое дело. Вместо 11000000101010000000001001100110 -> 192.168.2.102 результат просто превосходный. IP адрес, записанный в таком формате запоминается гораздо легче.

Обратите внимание:
Каждый из четырех октетов может принимать значение от 0 до 255 (255 = 28 — 1), в двоичном эквиваленте от 00000000 до 11111111. Возьмем выше упомянутый IP адрес 192.168.2.102

Возьмем выше упомянутый IP адрес 192.168.2.102

    Октет 1 Октет 2 Октет 3 Октет 4
Число в десятичном формате Число в двоичном формате 192 168 2 102
128 10000000 * *    
64 01000000 *     *
32 00100000   *   *
16 00010000        
8 00001000   *    
4 00000100       *
2 00000010     * *
1 00000001        
00000000        

Каждый из четырех октетов может состоять только из суммы чисел первой колонки, или второй колонки таблицы, только для десятичных чисел используется обычная арифметрика, а для двоичных логическая, побитовое И. Например, для получения октета со значением 192, нужно к 128 прибавить 64, или 10000000 & 01000000 = 1100000. Оба числа, 192 и 11000000 идентичны, только записаны в различных системах счисления.

Обратите внимание: При побитовом И, если оба бита равны 1 — результат будет 1, в противном случае результат будет 0. Также само вычисляется 168 — это сумма 128 + 32 + 8 и так далее

Также само вычисляется 168 — это сумма 128 + 32 + 8 и так далее.

Если просуммировать все числа первой колонки, получится число 255, в двоичном эквиваленте 11111111.
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

256 — это будет следующий, девятый разряд. 00000001 00000000

  1. Определяем из суммы каких чисел состоят октеты нашего IP адреса:
    • Первый октет: 128 + 64 = 192
      10000000 & 01000000 = 11000000
    • Второй октет: 128 + 32 + 8 = 168
      10000000 & 00100000 & 00001000 = 10101000
    • Третий октет: 2 не требуется суммировать00000010
    • Четвертый октет: 64 + 32 + 4 + 2 = 102
      01000000 & 00100000 & 00000100 & 00000010 = 01100110
  2. Записываем октеты IP адреса в двоичном формате: 11000000.10101000.00000010.01100110.

Обратите внимание, что каждый октет обязательно должен состоять из восьми цифр. Если у вас получилоь число меньше чем нужно, недостающие символы заполните нулями слева

Например, число 2 = 10, но записываем мы 00000010.

Маршрутизация

В примере выше, был рассмотрен случай, когда компьютеры находятся как в пределах одной сети, так и в разных сетях. Если компьютеры находятся в пределах одной сети, это означает, что эти компьютеры могут передавать информацию непосредственно между собой, как говорится из рук в руки. Если-же компьютеры находятся в различных сетях, для передачи данных между ними потребуется маршрутизатор, в простонародье называемый роутером.

Роутером называется сетевое устройство, котрое имеет два, или более сетевых интерфейса, каждому из которых присвоен уникальный IP адрес и принадлежат эти адреса к разным подсетям. На уровне операционной системы роутера запущена служба, которая при заходе на один из сетевых интерфесов IP пакета, производит его анализ и принимает решение куда передавать пакет дальше, выбирает маршрут.

В случае с домашним роутером, вариантов не много — он просто передает пакеты дальше на маршрутизатор провайдера, где IP пакет опять анализируется и так далее до тех пор, пока ваш IP пакет не достигнет цели.

Небольшое отступление. Практически у каждого из нас есть смартфон, работающий под управлением Android, или IOS. Каждый смартфон можно в один клик сделать роутером — достаточно включить на телефоне Точку доступа WiFi. Так-же, ваш домашний компьютер тоже может стать роутером!  Для этого достаточно в компьютер добавить еще один, или несколько сетевых адаптеров, а на уровне системы сделать несколько телодвижений для включения маршрутизации. В рамках данной статьи я этого не покажу, но имейте в виду, что практически каждое сетевое устройство может быть роутером.

Примечание:
Маршрутизатор зовется Роутером потому, что все устройства на пути передаваемого пакета являются частью маршрута, а маршрут по английски переводится route, соответственно маршрутизатор называют роутер.

Самый простой и самый распространенный случай, это когда сетевому устройству доступен один маршрутизатор — у каждого дома стоит WiFi роутер, через который доступ в интернет имеют все домашние устройства.

Примечание:
В редких случаях можно встретить случаи использования нескольких роутеров, но это больше исключение, чем правило. Где может понадобиться несколько роутеров? Например у вас дома заходит интернет от нескольких провайдеров и вы не имеете продвинутого роутера, имеющего два, или более внешних интерфейса. В этом случае каждый роутер имеет выход в интернет через отдельный канал связи, а внутренними интерфейсами оба маршрутизатора смотрят в общую домашнюю сеть.

Итак, компьютер определил, что для отправки пакета требуется передать данные в другую сеть. Для этого, в настройках IP параметров каждого компьютера предусмотрен дополнительный параметр — IP адрес шлюза по умолчанию. Шлюз по умолчанию, это и есть роутер, который будет передавать IP пакеты сетевым устройствам, которые находятся за пределами вашей локальной сети.

Все о локальных сетях и сетевом оборудовании

Point-to-Point протоколы

Отдельно расскажем о Point-to-Point (от точки к точке, двухточечный) протоколе также известном как PPP. PPP уникален по своим функциям, он применяется для коммуникации между двумя маршрутизаторами без участия хоста или какой-либо сетевой структуры в промежутке. При необходимости, PPP обеспечивает аутентификацию, шифрование, а также сжатие данных. Он широко используется при построении физических сетей, например, кабельных телефонных, сотовых телефонных, сетей по кабелю последовательной передачи и транк-линий (когда один маршрутизатор подключают к другому для увеличения размера сети).

У PPP есть два подвида — PPPoE (PPP по Ethernet) и PPPoA (PPP через асинхронный способ передачи данных — ATM), интернет-провайдеры часто их используют для DSL соединений.

PPP и его старший аналог SLIP (протокол последовательной межсетевой связи) формально относятся к межсетевому уровню TCP/IP, но в силу особого принципа работы, иногда выделяются в отдельную категорию. Преимущество PPP в том, что для установки соединения не требуется сетевая инфраструктура, а необходимость маршрутизаторов отпадает. Эти факторы обуславливают специфику использования PPP протоколов.

Свойства

IP объединяет сегменты сети в единую сеть, обеспечивая доставку пакетов данных между любыми узлами сети через произвольное число промежуточных узлов (маршрутизаторов). Он классифицируется как протокол сетевого уровня по сетевой модели OSI. IP не гарантирует надёжной доставки пакета до адресата — в частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться (приходят две копии одного пакета), оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прийти вовсе. Гарантию безошибочной доставки пакетов дают некоторые протоколы более высокого уровня — транспортного уровня сетевой модели OSI, — например, TCP, которые используют IP в качестве транспорта.

Фрагментация IP пакетов

При доставке IP пакета он проходит через разные каналы доставки. Возможно возникновение ситуации, когда размер пакета превысит возможности узла системы связи. В этом случае протокол предусматривает возможность дробления пакета на уровне IP в процессе доставки. Соответственно, к конечному получателю пакет придет в виде нескольких пакетов, которые необходимо собрать в один перед дальнейшим анализом. Возможность дробления пакета с последующей сборкой называется IP фрагментацией.

В протоколе предусмотрена возможность запрещения фрагментации конкретного пакета. Если такой пакет нельзя передать через сегмент связи целиком, то он уничтожается, а отправителю направляется ICMP сообщение о проблеме.

Рекомендуем

Пакет

IP-пакет — форматированный блок информации, передаваемый по компьютерной сети, структура которого определена протоколом IP. В отличие от них, соединения компьютерных сетей, которые не поддерживают IP-пакеты, такие как традиционные соединения типа «точка-точка» в телекоммуникациях, просто передают данные в виде последовательности байтов, символов или битов. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.

Версия 4 (IPv4)

Октет 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия IHL Тип обслуживания Длина пакета
4 Идентификатор Флаги Смещение фрагмента
8 Время жизни (TTL) Протокол Контрольная сумма заголовка
12 IP-адрес отправителя
16 IP-адрес получателя
20 Параметры (от 0 до 10-и 32-х битных слов)
  Данные
  • Версия — для IPv4 значение поля должно быть равно 4.
  • IHL — (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных (payload — полезный груз) в пакете. Минимальное корректное значение для этого поля равно 5.
  • Длина пакета — (Total Length) длина пакета в октетах, включая заголовок и данные. Минимальное корректное значение для этого поля равно 20, максимальное — 65535.
  • Идентификатор — (Identification) значение, назначаемое отправителем пакета и предназначенное для определения корректной последовательности фрагментов при сборке пакета. Для фрагментированного пакета все фрагменты имеют одинаковый идентификатор.
  • 3 бита флагов. Первый бит должен быть всегда равен нулю, второй бит DF (don’t fragment) определяет возможность фрагментации пакета и третий бит MF (more fragments) показывает, не является ли этот пакет последним в цепочке пакетов.
  • Смещение фрагмента — (Fragment Offset) значение, определяющее позицию фрагмента в потоке данных. Смещение задается количеством восьмибайтовых блоков, поэтому это значение требует умножения на 8 для перевода в байты.
  • Время жизни (TTL) — число маршрутизаторов, которые может пройти этот пакет. При прохождении маршрутизатора это число уменьшается на единицу. Если значение этого поля равно нулю, то пакет должен быть отброшен, и отправителю пакета может быть послано сообщение Time Exceeded (ICMP тип 11 код 0).
  • Протокол — идентификатор интернет-протокола следующего уровня указывает, данные какого протокола содержит пакет, например, TCP, UDP, или ICMP. В IPv6 называется «Next Header».

Версия 6 (IPv6)

Позиция в октетах 1 2 3
Позиция в битах 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия Класс трафика Метка потока
4 32 Длина полезной нагрузки След. заголовок Число переходов
8 64 IP-адрес отправителя
12 96
16 128
20 160
24 192 IP-адрес получателя
28 224
32 256
36 288
  • Версия — для IPv6 значение поля должно быть равно 6.
  • Класс трафика — определяет приоритет трафика (QoS, класс обслуживания).
  • Метка потока — уникальное число, одинаковое для однородного потока пакетов.
  • Длина полезной нагрузки — длина данных в октетах (заголовок IP-пакета не учитывается).
  • Следующий заголовок — задаёт тип расширенного заголовка (IPv6 extension), который идёт следующим. В последнем расширенном заголовке поле Next header задаёт тип транспортного протокола (TCP, UDP и т. д.) и определяет следующий инкапсулированный уровень.
  • Число переходов — максимальное число маршрутизаторов, которые может пройти пакет. При прохождении маршрутизатора это значение уменьшается на единицу и по достижении нуля пакет отбрасывается.

Рождение и образование

Пакет

IP-пакет — форматированный блок информации, передаваемый по компьютерной сети, структура которого определена протоколом IP. В отличие от них, соединения компьютерных сетей, которые не поддерживают IP-пакеты, такие как традиционные соединения типа «точка-точка» в телекоммуникациях, просто передают данные в виде последовательности байтов, символов или битов. При использовании пакетного форматирования сеть может передавать длинные сообщения более надежно и эффективно.

Версия 4 (IPv4)

Октет 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия IHL Differentiated Services Code Point ECN Длина пакета
4 Идентификатор Флаги Смещение фрагмента
8 Время жизни (TTL) Протокол Контрольная сумма заголовка
12 IP-адрес отправителя
16 IP-адрес получателя
20 Параметры (от 0 до 10-и 32-х битных слов)
  Данные
  • Версия — для IPv4 значение поля должно быть равно 4.
  • IHL — (Internet Header Length) длина заголовка IP-пакета в 32-битных словах (dword). Именно это поле указывает на начало блока данных (англ. payload — полезный груз) в пакете. Минимальное корректное значение для этого поля равно 5.
  • Длина пакета — (Total Length) длина пакета в октетах, включая заголовок и данные. Минимальное корректное значение для этого поля равно 20, максимальное — 65 535.
  • Идентификатор — (Identification) значение, назначаемое отправителем пакета и предназначенное для определения корректной последовательности фрагментов при сборке пакета. Для фрагментированного пакета все фрагменты имеют одинаковый идентификатор.
  • 3 бита флагов. Первый бит должен быть всегда равен нулю, второй бит DF (don’t fragment) определяет возможность фрагментации пакета и третий бит MF (more fragments) показывает, не является ли этот пакет последним в цепочке пакетов.
  • Смещение фрагмента — (Fragment Offset) значение, определяющее позицию фрагмента в потоке данных. Смещение задается количеством восьмибайтовых блоков, поэтому это значение требует умножения на 8 для перевода в байты.
  • Время жизни (TTL) — число маршрутизаторов, которые может пройти этот пакет. При прохождении маршрутизатора это число уменьшается на единицу. Если значение этого поля равно нулю, то пакет должен быть отброшен, и отправителю пакета может быть послано сообщение Time Exceeded (ICMP тип 11 код 0).

Версия 6 (IPv6)

Позиция в октетах 1 2 3
Позиция в битах 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Версия Класс трафика
4 32 Длина полезной нагрузки След. заголовок Число переходов
8 64 IP-адрес отправителя
12 96
16 128
20 160
24 192 IP-адрес получателя
28 224
32 256
36 288
  • Версия — для IPv6 значение поля должно быть равно 6.
  • Класс трафика — определяет приоритет трафика (QoS, класс обслуживания).
  • Метка потока — уникальное число, одинаковое для однородного потока пакетов.
  • Длина полезной нагрузки — длина данных в октетах (заголовок IP-пакета не учитывается).
  • Следующий заголовок — задаёт тип расширенного заголовка (англ. IPv6 extension), который идёт следующим. В последнем расширенном заголовке поле Next header задаёт тип транспортного протокола (TCP, UDP и т. д.) и определяет следующий инкапсулированный уровень.
  • Число переходов — максимальное число маршрутизаторов, которые может пройти пакет. При прохождении маршрутизатора это значение уменьшается на единицу и по достижении нуля пакет отбрасывается.

Примеры расчета сетей

Деление сети осуществляется присвоением битов из порции адреса хоста к порции адреса сети. Тем самым мы увеличиваем возможное количество подсетей, но уменьшаем количество хостов в подсетях. Чтобы узнать, сколько получается подсетей из присвоенных битов надо воспользоваться cisco формулой расчета сетей: 2n, где n является количеством присвоенных бит.

Пример расчета сети на 2 подсети.

У нас есть адрес сети 192.168.1.0/24, нам надо разделить имеющуюся сеть на 2 подсети. Попробуем забрать от порции хоста 1 бит и воспользоваться формулой: 21=2, это значит, что если мы заберём один бит от части хоста, то мы получим 2 подсети. Присвоение одного бита из порции хоста увеличит префикс на один бит: /25. Теперь надо выписать 2 одинаковых IP адреса сети в двоичном виде изменив только присвоенный бит (у первой подсети присвоенный бит будет равен 0, а у второй подсети = 1). Захваченный бит я выделю более жирным шрифтом красного цвета.

2 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):

1) 11000000.10101000.00000001.0000000
2) 11000000.10101000.00000001.10000000

Теперь запишем рядом с двоичным видом десятичный, и добавим новый префикс. Красным пометил порцию подсети, а синим – порцию хоста.

1) 11000000.10101000.00000001.00000000 = 192.168.1.0/25
2) 11000000.10101000.00000001.10000000 = 192.168.1.128/25

Всё, сеть разделена на 2 подсети. Как мы видим выше, порция хоста теперь составляет 7 бит.

Чтобы высчитать, сколько адресов хостов можно получить используя 7 бит, необходимо воспользоваться cisco формулой расчёта хостов: 2n-2, где n = количество бит в порции хоста.

27 — 2 = 126 хостов. В начале статьи было сказано, что вычитаемая цифра 2 является двумя адресами, которые нельзя присвоить хосту: адрес сети и широковещательный адрес.

Адрес сети, это когда в порции хоста все нули, а широковещательный адрес, это когда в порции хоста все единицы. Выпишем эти адреса для каждой подсети в двоичном и десятичном виде:

11000000.10101000.00000001.00000000 = 192.168.1.0/25 (адрес сети первой подсети)

11000000.10101000.00000001.01111111 = 192.168.1.127/25 (широковещательный адрес первой подсети)

11000000.10101000.00000001.10000000 = 192.168.1.128/25 (адрес сети второй подсети)

11000000.10101000.00000001.11111111 = 192.168.1.255/25 (широковещательный адрес второй подсети)

Пример расчета сети на 4 подсети.

Этот пример делается абсолютно по тому же алгоритму, что и предыдущий, поэтому я запишу текст немного короче. Адрес я буду использовать тот же, чтобы вы видели отличия. Если нужны подробности, пишите на почту eaneav@gmail.com.

У нас есть адрес сети 192.168.1.0/24, надо разделить сеть на 4 подсети. Высчитываем по формуле, сколько нам надо занять бит от хоста: 22 = 4. Префикс изменяется на /26.

4 подсети (захваченный бит я выделю более жирным шрифтом красного цвета):

1) 11000000.10101000.00000001.00000000
2) 11000000.10101000.00000001.01000000
3) 11000000.10101000.00000001.10000000
4) 11000000.10101000.00000001.11000000

Красным пометил порцию подсети, а синим – порцию хоста:

1) 11000000.10101000.00000001.00000000 = 192.168.1.0/26
2) 11000000.10101000.00000001.01000000 = 192.168.1.64/26
3) 11000000.10101000.00000001.10000000 = 192.168.1.128/26
4) 11000000.10101000.00000001.11000000 = 192.168.1.192/26

Всё, сеть разделена на 4 подсети. Порция хоста теперь составляет 6 бит.

26 — 2 = 62 хостов.

11000000.10101000.00000001.00000000 = 192.168.1.0/26 (адрес сети первой подсети)

11000000.10101000.00000001.00111111 = 192.168.1.63/26 (широковещательный адрес первой подсети)

11000000.10101000.00000001.01000000 = 192.168.1.64/26 (адрес сети второй подсети)

11000000.10101000.00000001.01111111 = 192.168.1.127/26 (широковещательный адрес второй подсети)

11000000.10101000.00000001.10000000 = 192.168.1.128/26 (адрес сети третьей подсети)

11000000.10101000.00000001.10111111 = 192.168.1.191/26 (широковещательный адрес третьей подсети)

11000000.10101000.00000001.11000000 = 192.168.1.192/26 (адрес сети четвёртой подсети)

11000000.10101000.00000001.11111111 = 192.168.1.255/26 (широковещательный адрес четвёртой подсети)

Свойства

IP объединяет сегменты сети в единую сеть, обеспечивая доставку пакетов данных между любыми узлами сети через произвольное число промежуточных узлов (маршрутизаторов). Он классифицируется как протокол сетевого уровня по сетевой модели OSI. IP не гарантирует надёжной доставки пакета до адресата — в частности, пакеты могут прийти не в том порядке, в котором были отправлены, продублироваться (приходят две копии одного пакета), оказаться повреждёнными (обычно повреждённые пакеты уничтожаются) или не прийти вовсе. Гарантию безошибочной доставки пакетов дают некоторые протоколы более высокого уровня — транспортного уровня сетевой модели OSI, — например, TCP, которые используют IP в качестве транспорта.

Фрагментация IP пакетов

При доставке IP пакета он проходит через разные каналы доставки. Возможно возникновение ситуации, когда размер пакета превысит возможности узла системы связи. В этом случае протокол предусматривает возможность дробления пакета на уровне IP в процессе доставки. Соответственно, к конечному получателю пакет придет в виде нескольких пакетов, которые необходимо собрать в один перед дальнейшим анализом. Возможность дробления пакета с последующей сборкой называется IP фрагментацией.

В протоколе предусмотрена возможность запрещения фрагментации конкретного пакета. Если такой пакет нельзя передать через сегмент связи целиком, то он уничтожается, а отправителю направляется ICMP сообщение о проблеме.

От Кремлёвского до ЦКАД: история строительства московских колец

Как понять причину поломки стиральной машинки Electrolux?

Современная стиральная техника настолько умна, что сама определяет причину поломки и выводит ее на дисплей в виде кода ошибки. Часто встречаемые коды ошибок у машин данного бренда:

  1. Е11 — бак медленно заполняется водой;
  2. Е21 — затрудненный слив воды;
  3. Е43, 44 — проблемы с закрытием люка;
  4. Е82 — проблема с функционированием селектора;
  5. ЕС1 — блокировка заливного клапана;
  6. EН2, EН3 — проблемы с электроникой.

Обращаем ваше внимание на систему диагностики EWM 2000. Данная система весьма удобна в использовании, она дает возможность фиксировать коды ошибок и производит проверку правильной работы машины в разных режимах

Для получения данных следует перевести агрегат Электролюкс в режим диагностики. Режим запустит основные тесты, встроенные в систему управления агрегата. При этом дверца люка будет заблокирована. Номер действия, выполняемого агрегатом, отображается в виде двоичного кода.

Например, на рисунке №1 показаны фазы стирки L5-L8. В данном случае индикатор L8 указывает на первый, L7 — на второй, L6 — на третий, а L5 — на четвертый разряды двоичного кода выполняемой операции.

Результаты диагностики необходимо сообщить мастерам «Москва-Мастер». Наши специалисты помогут вам устранить неисправность в работе агрегата!

Особые IP-адреса

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:
если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий