Оптический выход на телевизоре: что это

Справочник транзисторов.

Применение

Волоконно-оптическая связь

Основная статья: Волоконно-оптическая связь

Волоконно-оптический кабель

Основное применение оптические волокна находят в качестве среды для передачи информации в волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Применение оптических волокон для линий связи обусловлено тем, что оптическое волокно обеспечивает высокую защищённость от несанкционированного доступа, низкое затухание сигнала при передаче информации на большие расстояния, возможность оперировать с чрезвычайно высокими скоростями передачи и пропускной способностью даже при том, что скорость распространения сигнала в волокнах может быть до 30 % ниже, чем в медных проводах и до 40 % ниже скорости распространения радиоволн. Уже к 2006 году была достигнута частота модуляции 111 ГГц, в то время как скорости 10 и 40 Гбит/с стали уже стандартными скоростями передачи по одному каналу оптического волокна. При этом каждое волокно, используя технологию спектрального уплотнения каналов может передавать до нескольких сотен каналов одновременно, обеспечивая общую скорость передачи информации, исчисляемую терабитами в секунду. Так, к 2008 году была достигнута скорость 10,72 Тбит/с, а к 2012 — 20 Тбит/с. Последний рекорд скорости — 255 Тбит/с.

С 2017 года специалисты говорят о достижении практического предела существующих технологий оптоволоконных линий связи и о необходимости кардинальных изменений в отрасли.

Волоконно-оптический датчик

Оптическое волокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии дают волоконно-оптическим датчикам преимущество перед традиционными электрическими в определённых областях.

Оптическое волокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микрофон, основными элементами которого являются лазерный излучатель, отражающая мембрана и оптическое волокно.

Волоконно-оптические датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Они хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков.

С использованием полимерных оптических волокон создаются новые химические датчики (сенсоры), которые нашли широкое применение в экологии, например, для детектирования аммония в водных средах.

Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.

Оптическое волокно применяется в лазерном гироскопе, используемом в Boeing 767[источник не указан 2791 день] и в некоторых моделях машин (для навигации). Волоконно-оптические гироскопы применяются в космических кораблях «Союз». Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна, полученные при вращении заготовки с сильным встроенным двойным лучепреломлением.

Другие применения

Диск фрисби, освещённый оптическим волокном

Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптические волокна направляют солнечный свет с крыши в какую-нибудь часть здания. Также в автомобильной светотехнике (индикация на приборной панели).

Волоконно-оптическое освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные рождественские ёлки.

Оптическое волокно также используется для формирования изображения. Пучок света, передаваемый оптическим волокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.

Оптическое волокно используется при конструировании волоконного лазера.

Видео

Типы оптических разъемов

В настоящее время наиболее распространены три типа оптических разъемов: FC, SC и LC.

FC

Разъемы FC, как правило, используются в одномодовых соединених. Корпус разъема выполнен из никелированной латуни. Резьбовая фиксация позволяет обеспечить надежную защиту от случайных разъединения.

Старый, зарекомендовавший себя стандарт. Обеспечивает отличное качество соединения, особенно FC/UPC, FC/APC.

  • подпружиненное соединение, за счет чего достигается «вдавливание» и плотный контакт;
  • металлической колпачок обеспечивает прочную защиту;
  • коннектор вкручивается в розетку, а значит, не может выскочить, даже если случайно дернуть;
  • шевеление кабеля не влияет на соединение.

Однако плохо подходит для плотного расположения разъемов — необходимо пространство для вкручивания/выкручивания.

SC

Более дешевый и удобный, но менее надежный аналог FC. Легко соединяется (защелка), разъемы могут располагаться плотно.

Однако пластиковая оболочка может сломаться, а на затухание сигнала и обратные отражения влияют даже прикосновения к коннектору.

Данный тип разъемов используется наиболее часто, но не рекомендован на важных магистралях.

Тип разъема SC используется как для многомодового волокна, так и одномодового. Диаметр наконечника 2,5 мм, материал — керамика. Корпус коннектора выполнен из пластика. Фиксация коннектора осуществляется поступательным движением с защелкиванием.

LC

Уменьшенный аналог SC. За счет малого размера применяется для кроссовых соединений в офисах, серверных и т.п. — внутри помещений, там где требуется высокая плотность расположения разъемов.

Диаметр наконечника разъема 1,25 мм, материал — керамика. Фиксация разъема происходит за счет прижимного механизма — защелки, аналогично разъему типа RJ-45, которая исключает непредвиденное разъединение.

При использовании дуплексных патчкордов возможно соединение коннекторов клипсой. Используется для многомодовых и одномодовых волокон.

Автор разработки этого типа коннектора — ведущий производитель телекоммуникационного оборудования, Lucent Technologies (США) — изначально прогнозировал своему детищу судьбу лидера рынка. В принципе, так оно и есть. Особенно учитывая то, что этот тип разъема относится к соединениям с повышенной плотностью монтажа.

ST

В настоящее время ST коннектор широко не применяется из-за недостатков и возросших потребностей по плотности монтажа. Фиксация коннектора происходит за счет поворота вокруг оси, подобно BNC разъему.

9.10. Преобразователи длин волн

Для создания полностью оптических сетей необходимы преобразования длин волн оптических сигналов, переносящих информацию. Это преобразование можно осуществить в системе «оптика – электроника – оптика», известной как транспондер. Однако это устройство очень дорогое и сложное. Поэтому получили развитие другие методы преобразования без «посредничества» электроники.

Один из методов волновой конверсии без оптоэлектронного преобразования основан на использовании ферроэлектрического кристалла, внутри которого создается периодическая структура с чередующейся сменой направлений поляризации для нелинейного оптического взаимодействия двух частот (сигнала и накачки). При одновременном распространении входного сигнала и сигнала от лазера накачки происходит генерация волны, которая является разностной между волнами накачки и сигнала (рисунок 9.20).

Рисунок 9.20. Схема преобразования волны в конверторе

В процессе преобразования формируется разностная частота

(9.1)

где n – порядок нелинейности.

В качестве нелинейной среды может использоваться отрезок стекловолокна с нулевой смещенной дисперсией (DSF) длиной 2 км. При этом должна быть обеспечена накачка на длине волны, соответствующей сохранению

(9.2)

Эффект преобразования длины волны может быть получен и в полупроводниковом оптическом усилителе .

Конструкция волоконно-оптического кабеля

Конструкция ВОК изменяется в зависимости от его типа и назначения при общем сходстве отдельных конструктивных элементов. Познакомимся с особенностями кабельной конструкции на примере оптоволоконного кабеля, изображенного на рисунке.

Волоконно-оптический кабель в разрезе

В центре конструкции виден силовой элемент из стеклопластикового прутка, предназначенный для демпфирования нагрузок, создаваемых при монтаже и эксплуатации. Волокна расположены внутри оптических модулей, оберегающих их от внешнего воздействия. Модули представляют собой пластиковые трубки, имеющие оптимальный диаметр для группирования нужного количества ОВ.

В состав ВОК входят один или несколько модулей, что зависит от общего числа волокон. Модульное группирование оптических волокон и их цветовая маркировка намного облегчают идентификацию каждого конкретного оптоволокна при монтаже муфт и расшивке оптоволоконного кабеля на кроссе.

Оптические модули покрыты водоотталкивающим гелем, предохраняющим от проникновения влаги. Бандажная лента из полиэтилена фиксирует оптические модули и не дает вытечь гелевому наполнителю.

Внутренняя полиэтиленовая оболочка является буферным слоем, разделяющим оптические модули и армирующую броню. В данном примере бронирование выполнено стальной оцинкованной проволокой, надежно защищающей от грызунов и экстремальных нагрузок.

Важнейшим элементом защиты является внешняя оболочка из негорючего высокоплотного полиэтилена. От надежности наружного покрытия зависит длительность безотказного функционирования оптоволоконного кабеля, что диктует строгие требования к технологии его производства.

Основные характеристики оптического кабеля. Его преимущества и недостатки

Преимущество оптического кабеля перед кабелем обычным несомненно. Среди наиболее очевидных моментов хотелось бы выделить:

  • Невероятно высокая пропускная способность. Оптический кабель способен передать за малый отрезок времени значительное количество информации.
  • Оптоволокно не  излучает электромагнитные волны. Соответственно, оно и не способно подвергаться воздействию электромагнитного излучения. В результате сигнал защищен от искажений.
  • Кабель надежно защищен от несанкционированного подключения. Попытка несанкционированного подключения  вызывает нарушение целостности кабеля и прекращение передачи данных. Скрыть ее становится невозможно.
  • Очень незначительный показатель затухания сигнала.  Современное волокно оптического кабеляпри длине волны в 1500 нм обладает показателем затухания  около 0,3 дБ/км.  Это дает возможность расположить соседние повторители и усилители на расстоянии до 100 км.
  • Оптический кабель обладает меньшим весом и объемом, чем обычный. Например, диаметр 900-парного  телефонного кабеля 7,5 см. Его успешно заменит оптический кабель диаметром около 1,5 см. При этом большую часть кабеля составят всевозможные защитные оболочки. Диаметр  непосредственно оптоволокна составит 0,1 см.

  • При использовании оптического кабеля нет необходимости в заземлении оболочки.  Это связано с изолирующими свойствами оптоволокна.
  • Возможность использования  на предприятиях с повышенным риском. Связано с такой особенностью оптоволокна, как  отсутствию искрообразования. Именно благодаря ей оптический кабель  – пожаробезопасный материал.
  • Оптический кабель – весьма экономичный материал. Для изготовления оптоволокна используется кварц, элемент весьма недорогой и распространенный. В результате и стоимость самого оптического кабеля не отличается от стоимости кабеля обычного.
  • Долговечность. Ничто не вечно. Со временем теряют свои свойства все материалы, в том числе и  оптический кабель. Возрастает  затухание. Однако эти процессы происходят очень медленно. Скорость потери свойств оптического кабеля значительно ниже по сравнению с иными видами кабелей. Срок  бесперебойной работы оптического кабеля составляет не менее 25 лет.

Невзирая на  большое количество положительных моментов, использование оптического кабеля имеет и ряд недостатков:

  • Высокая стоимость  коммуникаций с оптическим кабелем. Правда,  это связано с  использованием дополнительного дорогого оборудования.  Стоимость самого оптического кабеля не слишком отличается от стоимости кабеля обычного.
  • Сложность монтирования сетей с  оптическим кабелем. Разъемы необходимо устанавливать буквально с микронной точностью. Само соединение должно быть выполнено очень точно, ровно. Наличие зазоров недопустимо. Поверхность стыка необходимо  гладко отполировать. При несоблюдении вышеуказанных требований  не избежать потерь в скорости и качестве передаваемого сигнала.
  • Соединения выполняются  сваркой или склеиванием. При склеивании используется особый гель, обладающий тем же значением коэффициента преломления, что и стекловолокно.
  • В процессе работы с оптическим кабелем используются  специальные инструменты. Монтаж  оптических сетей осуществляется исключительно высококвалифицированными специалистами.
  • Возможна порча оптического кабеля из-за резкого перепада температур. Стекловолокно трескается. Для решения данной проблемы  в производство запущены  оптические кабели, в процессе изготовления которых используется радиационно стойкое стекло.  К сожалению, это приводит к значительному увеличению стоимости.

Как видим, недостатки не столь существенны. Популярность оптических сетей растет с каждым днем. Одновременно снижается стоимость материала и растет число  специалистов, работающих с оптическим кабелем. При  такой тенденции в ближайшем будущем указанные недостатки себя изживут.

Структура кварцевого многомодового волокна

В оптическом волноводе может одновременно распространяться несколько пространственных мод оптического излучения. Количество распространяющихся мод зависит, в частности, от геометрических размеров оптоволокна. Волокно, в котором распространяется больше одной моды оптического излучения, называется многомодовым. В телекоммуникациях в основном применяются кварцевые многомодовые волокна с диаметром сердцевины и оболочки 50/125 и 62,5/125 мкм (также встречается устаревшее волокно 100/140 мкм).

Многомодовое кварцевое волокно имеет и сердцевину, и оболочку из кварцевого стекла. В процессе производства путем легирования исходного материала определенными примесями достигается нужный профиль показателя преломления. Если стандартное одномодовое волокно имеет ступенчатый профиль показателя преломления (показатель преломления одинаков во всех точках поперечного сечения сердцевины), то в случае многомодового волокна чаще всего формируется градиентный профиль (показатель преломления плавно уменьшается от центральной оси сердцевины к оболочке). Это делается, для того чтобы снизить влияние межмодовой дисперсии. При градиентном профиле моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины (рис. 1). Встречаются также многомодовые волокна с другим профилем показателя преломления.

Рис. 1. Градиентное многомодовое волокно

Кварцевое волокно имеет спектральную характеристику затухания с тремя окнами прозрачности (наименьшего затухания) – около длин волн 850, 1300 и 1550 нм. Для работы с многомодовым волокном в основном используются длины волн 850 и 1300 (1310) нм. Типичные значения затухания на этих длинах волн – 3,5 и 1,5 дБ/км соответственно.

Для защиты волокна на оптическую оболочку наносится первичное покрытие из полимерного материала (чаще всего акрила), которое окрашивается в один из двенадцати стандартных цветов. Диаметр оптоволокна с покрытием обычно составляет около 250 мкм. Волоконно-оптический кабель состоит из одного или нескольких волокон с первичным покрытием, а также различных упрочняющих и защитных элементов. В простейшем случае многомодовый оптический кабель представляет собой оптическое волокно, окруженное кевларовыми нитями и помещенное во внешнюю защитную оболочку оранжевого цвета (рис. 2).

Рис. 2. Симплексный многомодовый кабель

Какой кабель лучше

Чтобы решить, лучше оптоволокно или обычная витая пара, нужно определить, в каких условиях они будут использоваться. Если нужно просто соединить несколько компьютеров в сеть, конечно, лучше всего подойдёт витая пара. Такую сеть можно создать очень быстро и дёшево, а скорость передачи будет вполне приличной. Кроме того, витая пара очень удобна в доме или в офисе по причине её непритязательности. Провод можно свободно изгибать, протягивать в самых неудобных местах. Даже если он случайно повредится, цена ему – копейки.

Оптоволокно в офисном варианте – довольно дорогая штука. Требуется оборудование, да и сам кабель не так уж и дёшев. Поэтому для устройства локальных сетей его использование просто финансово неоправданно. Единственное преимущество – высокая скорость передачи, не проявит себя, так как вряд ли даже десяток компьютеров смогут создать такой непрерывный трафик, на который рассчитано оптоволокно. Однако у оптоволокна есть немалый плюс – расстояние прокладки и независимость от помех. Поэтому его и используют для прокладки интернета к населённым пунктам или многоэтажкам. А вот дальше уже идет разводка по абонентам с помощью витой пары. Так используются преимущества обоих типов кабелей.

Кроме того, вот уже несколько лет провайдеры для одного абонента предоставляют скорость не более 100 Мбит/с, а на практике гораздо меньше. С такой нагрузкой вполне справляется витая пара. Но много абонентов из одного дома способны нагрузить и оптоволоконный кабель, поэтому его и удобнее проводить не от каждой квартиры к провайдеру, а от целого многоквартирного дома. Поэтому, если вы делаете выбор между обычным проводом типа витая пара и оптико-волоконным кабелем, учитывайте их плюсы и минусы. Там, где расстояния небольшие, нет особых помех, и скорости около 100 Мбит/с достаточно, можно обойтись витой парой. Там, где нужна помехоустойчивость, соединение на километры, и ожидается высокая нагрузка, лучше подойдёт оптоволокно.

Через какие разъемы можно подключить акустику к телевизору

Чтобы правильно подсоединить внешние динамики, стереосистему или же дорогую аппаратуру с сабвуфером необходимо определить, какими выходами оснащен телевизор. Обычно для подключения различного вида акустики современные модели TV-панелей оснащаются разными интерфейсами:

  1. Цифровой выход HDMI RCA. Наиболее прогрессивный тип цифрового решения, который поддерживают практически все современные модели ЖК-панелей. Канал обратной совместимости обеспечивает высокое качество звучания, за счет режима работы, когда техника не принимает данные, а отправляет их на внешние динамики.
  2. Интерфейс – Scart. Многоштекерный разъем европейского стандарта, используется для подключения мультимедийной аппаратуры (ЖК-панелей, внешних динамиков, акустических систем). Обеспечивает передачу аудиосигнала высокого качества, как вцифровом, так и в аналоговом типе.
  3. AV-вход и выход. Композитный интерфейс AV до сих пор используется на устаревшей аппаратуре. Передача аудиосигнала происходит при помощи кабеля RCA (тюльпан), отличается высокой потерей качества звука, низкой помехоустойчивостью.
  4. Линейный выход «AUX OUT». Стандартные разъемы, рассчитанные на передачу низкочастотных звуковых и видеосигналов. Уровень сигнала нормирован и не изменяется, обеспечивая совместимость техники разных производителей.
  5. TRS или mini jack. Гнездо-разъем выводит звук на головную гарнитуру (наушники).
  6. TOSlink оптический аудиовыход. Совершает передачу данных в цифровом формате, рассчитан на определенную акустику. Канал не преобразует сигнал, благодаря этому достигается высокая скорость передачи, без потери качества.

Что было до волокна: DSL и кабель

Цифровая абонентская линия (DSL) использовала существующие телефонные линии для передачи данных, которые обычно делались из меди. DSL медленный, старый, и, по большей части, был вытеснен кабелем, но он всё ещё сохраняется в некоторых сельских районах. Средняя скорость для DSL составляет около 2 Мбит/с.

Кабельный интернет использует коаксиальный кабель, также изготовленный из меди, и, как правило, поставляется с в формате таких же кабелей, которые используются для управления телевизионной сетью. Вот почему многие интернет-провайдеры предлагают в комплекте планы с подпиской на телевидение и доступом в интернет. Средняя скорость для кабеля варьируется, но колеблется от 20 Мбит/с до 100 Мбит/с.

Типы оптических кабелей

Различают два  типа оптических кабелей:

  1. Одномодовый оптический кабель. Все световые лучи в кабелях подобного типа движутся по одному пути и  одновременно  подходят к приемнику. В результате отсутствуют искажения формы сигнала. Одномодовый кабель оснащен оптоволокном диаметром  в 1300 нм. Передаются только световые волны этой же длины. Использование одномодовых кабелей  способствует передаче сигнала на более дальние расстояния, чем использование кабелей многомодовых. Эта особенность связана с  весьма незначительными значениями дисперсии и потерь сигнала.  При использовании одномодового кабеля применяются лазерные светодиоды. Затухание сигнала в одномодовом кабеле весьма низкое, порядка 5 дБ/км.
  2. Многомодовый оптический кабель. В данном типе кабеля лучи идут не по одному пути. Их траектории отличаются значительным разбросом. Результат – искажение сигнала на приемнике. При  передаче сигнала по многомодовому кабелю  применяются обычные светодиоды. Это ведет к значительному снижению стоимости коммуникационных сетей и увеличению сроков службы приемопередатчиков. Для многомодового  кабеля характерна длина световой волны  около 850 нм с отклонениями в 30-50 нм. Затухание сигнала в кабеле может достигать 20 дБ/км. Допускается длина кабеля подобного типа до 5 км.

Основным типом оптического кабеля в настоящее время  является многомодовый. Это связано с его доступностью и дешевизной. В перспективе ведущие позиции должны перейти к кабелю одномодовому. Его прекрасные характеристики, низкий уровень затухания позволяют надеяться, что со временем высокая стоимость приемопередающего оборудования перестанет быть препятствием для распространения  этого высококачественного  материал.

Конструкция оптоволоконного кабеля

Оптоволокно сконструировано таким образом, что передача данных происходит по специальным оптическим магистралям, которые состоят из отдельных носителей. Они, в свою очередь, объединяются в некую общую конструкцию под названием оптоволоконный кабель.

Как уже стало понятно, кабель делается из стекла, которое само по себе — довольно хрупкий материал — его можно легко разбить. С этой целью провода обеспечиваются защитой от механических повреждений, но этого недостаточно для сохранности кабеля.

Важно! Для большей безопасности оптокабеля объединяют в модули, которые и образуют один кабель. Конструкция его может быть абсолютно разная: диаметр одного провода будет 6 мм, а другого — 1,5 сантиметра

Принцип работы оптического носителя

Процесс обмена данными происходит за счет того, что свет лазера проходит по кабелю от встроенного светодиодного элемента. Передача заключается в создании однонаправленных импульсов в виде двоичного кода. Специально для обмена данными было создано два независимых канала.

9.1. Оптические разъемные соединители (коннекторы)

Номенклатура стандартных соединителей достаточно велика: Лист-Х, ST, FC, SC, FDDI и другие. Наиболее широкое распространение получили соединители SC, ST и FC (таблица 9.1, рисунки 9.1-9.3).

Корпусные детали коннекторов ST и FC изготовлены из никелированной латуни, а SC – из латуни и пластмассы. Материал хвостовиков и заглушек – цветной пластикат. Коннекторы имеют керамические наконечники диаметром 2,5 мм, обеспечивающие физический контакт при соединении через проходную розетку и вносимые потери менее 0,2 дБ. Многомодовые (ММ), одномодовые (SM) и одномодовые со скошенным торцом (АРС) коннекторы комплектуются хвостовиками разного цвета. Оконцевание производится по технологии эпоксидной вклейки. Двойное кримпирование (за кевларовые нити и за оболочку кабеля) повышает надежность и долговечность шнуров.

Таблица 9.1. Характеристики коннекторов

Дополнительный цвет к применяемому типичному – красный.

Коннектор ST рекомендуется использовать в первую очередь для многомодовых применений. Наконечник коннектора не связан с корпусом и оболочкой кабеля, что делает конструкцию проще, надежней и дешевле. В то же время такая конструкция полностью удовлетворяет многомодовому применению. Моноблочная конструкция ST коннектора разработана для быстрого оконцевания. Корпус из никелированной латуни, изготовленный токарным способом, наилучшим образом отвечает байонетному соединению.

Рисунок 9.1. Коннектор ST

Коннектор FC рекомендуется в первую очередь для одномодовых применений в системах дальней связи и специализированных системах, а также в системах кабельного телевидения. Соединение шнуров, оконцованных коннекторами FC/PC, через стандартную соединительную розетку характеризуется высокой надежностью, стойкостью к вибрации и одиночным ударам до 1000 g, т.к. наконечник коннектора развязан с корпусом и оболочкой кабеля.

Рисунок 9.2. Коннектор FC

Примеры обозначений: FC-SM-125 – одномодовый коннектор FC для волокна в 3-мм кабеле (моноблочная конструкция) с диаметром отверстия наконечника 125 мкм.FC(S)-SM-126 – одномодовый компактный коннектор FC(S) для волокна в 900 мкм буферной оболочке, с диаметром отверстия 126 мкм.SC-d-MM-127-900 – многомодовый дуплексный коннектор для волокна в 900 мкм буферной оболочке, с диаметром отверстия наконечника 127 мкм.Коннектор SC рекомендуется для многомодовых и одномодовых применений. Он имеет полимерный корпус типа push-pull. Наконечник коннектора развязан с корпусом и оболочкой кабеля. Моноблочная конструкция обеспечивает быстрое оконцевание.

Рисунок 9.3. Коннектор SC

Дуплексный коннектор SC представляет собой два обычных коннектора SC, объединенных между собой специальным полимерным зажимом.

Результаты подбора транзистора (поиска аналога)

12.5. Технология навивки оптического кабеля на провода ЛЭП

Реализация способа навивки волоконно-оптического кабеля на провода ЛЭП может осуществляться различными способами в зависимости от сложности трассы, возможности подъезда к опорам и середине пролета.

Как правило, навивку осуществляют на нижний фазовый провод, что позволяет использовать только автономный гидроподъемник (АГП) на базе того или иного автомобиля. В отдельных случаях, если высота подъема АГП недостаточна, применяют специальные механизмы для подъема навивочной машины.

Навивка выполняется двумя основными способами , применение которых определяется проектными решениями конкретной ВОЛС.

Первый способ требует возможности подъезда к середине пролета. В этом случае навивочная машина устанавливается на провод ЛЭП, но базовый барабан, на котором находится вся строительная длина ВОК, может располагаться как на кронштейне навивочной машины, так и на земле. Определяется длина пролета с учетом стрелы провиса провода и с базового барабана сматывается длина ВОК с учетом коэффициента удлинения кабеля за счет накрутки. При приведенных выше параметрах навивочной машины коэффициент удлинения кабеля не превышает 1 %. По меткам, нанесенным на строительной длине кабеля, определяется ее середина, формируется петля, которая закрепляется на рабочем барабане. Намотка кабеля на рабочий барабан осуществляется в два слоя: верхний является продолжением длины кабеля от предыдущей опоры, нижний — продолжением кабеля после петли. Начало кабеля верхнего слоя (от предыдущей опоры) пропускается через сбрасыватель водила, рабочий барабан фиксируется и начинается равномерное перемещение тележки с рабочим бара­баном вдоль провода. Наблюдающий за перемещением рабочего барабана, должен остановить перемещение машины в момент выхода петли из барабана и закрепить петлю кабеля на проводе. В противном случае, если движение машины не остановить и не закрепить петлю, вращение водила в другую сторону приведет к сматыванию кабеля с провода. При достижении следующей опоры весь кабель должен быть смотан с рабочего барабана, что позволит свободно переставить машину в начало следующего пролета через изолятор и повторить операции для навивки следующего пролета. Такой способ интересен тем, что кабель практически не навит на провод, и при обрыве несущего провода он может быть сохранен.

Базовый барабан в процессе перемещения навивочной машины может находиться как на автомашине, которая движется синхронно с перемещаемой навивочной машиной, так и быть установленным на кронштейне навивочной машины, что позволяет преодолевать любые препятствия, находящиеся под ЛЭП. Этот способ является основным, так как позволяет производить навивку с любого места протяженности строительной длины кабеля и применяется обычно на ровных участках трассы ЛЭП, т. е. при наличии возможности подъезда к середине пролета для закрепления петли.

Второй способ навивки используется в тех случаях, когда существуют труднопроходимые участки трассы (овраги, реки, ущелья и пр.). Способ предполагает намотку кабеля на рабочий барабан сплошным слоем в несколько рядов, что возможно осуществить только в начале или конце строительной длины кабеля. При этом максимальная длина пролета может достигать 600 м.

Вопрос выбора того или иного способа навивки определяется на стадии принятия проектных решений и расчете протяженности строительных длин.

Монтаж оптических муфт осуществляется обычным способом в передвижной лаборатории, поскольку концы строительных длин кабеля имеют технологический запас для спуска с фазового провода. После монтажа оптических муфт технологический запас кабеля и смонтированная муфта размещаются в специальном контейнере, который подвешивается на фазовый провод с помощью специальных зажимов, обеспечивающих его сохранность. Подвеска контейнера именно таким способом позволяет отказаться от установки спуска с фазового провода на каждой строительной длине.

Контрольные вопросы 1. Какие достоинства ВОЛС, подвешиваемых на опорах воздушных линий электропередачи высокого напряжения?

2. Какие факторы приводят к повреждениям ВОЛС на основе самонесущего кабеля?

3. Перечислите достоинства навивной технологии строительства ВОЛС.

4. Перечислите достоинства и недостатки технологии с применением оптического кабеля в грозозащитном тросе.

5. Какие преимущества и недостатки применения диэлектрического оптического самонесущего кабеля?

6. Какова конструкция спуска ВОК с фазового провода?

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий